Search results for "mitochondrial metabolism"

showing 4 items of 4 documents

Antioxidant Therapies and Oxidative Stress in Friedreich´s Ataxia: The Right Path or Just a Diversion?

2020

Friedreich's ataxia is the commonest autosomal recessive ataxia among population of European descent. Despite the huge advances performed in the last decades, a cure still remains elusive. One of the most studied hallmarks of the disease is the increased production of oxidative stress markers in patients and models. This feature has been the motivation to develop treatments that aim to counteract such boost of free radicals and to enhance the production of antioxidant defenses. In this work, we present and critically review those 'antioxidant' drugs that went beyond the disease's models and were approved for its application in clinical trials. The evaluation of these trials highlights some …

reactive oxygen speciesFriedreich’s ataxia; clinical trials; oxidative stress; antioxidant therapies; reactive oxygenspecies; scavengers; antioxidant response; mitochondrial metabolism; ferroptosisclinical trialsmitochondrial metabolismantioxidant responseEstrès oxidatiulcsh:RM1-950Friedreich’s ataxiaReviewFriedreich´s ataxia590 Tiere (Zoologie)Antioxidantsferroptosisscavengerslcsh:Therapeutics. Pharmacology570 Biowissenschaften Biologieddc:590oxidative stressantioxidant therapiesddc:570Antioxidants
researchProduct

Correction: DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells

2015

Introduction Diabetes Associated Protein in Insulin-sensitive Tissues (DAPIT) is a subunit of mitochondrial ATP synthase and has also been found to associate with the vacuolar H+-ATPase. Its expression is particularly high in cells with elevated aerobic metabolism and in epithelial cells that actively transport nutrients and ions. Deletion of DAPIT is known to induce loss of mitochondrial ATP synthase but the effects of its over-expression are obscure. Results In order to study the consequences of high expression of DAPIT, we constructed a transgenic cell line that constitutively expressed DAPIT in human embryonal kidney cells, HEK293T. Enhanced DAPIT expression decreased mtDNA content and …

Epithelial-Mesenchymal Transitionmitochondrial metabolismBiolääketieteet - BiomedicineCellActive Transport Cell NucleusGene DosageRespiratory chainlcsh:MedicineGene ExpressionMitochondrionta3111glukoosiNeoplasmsmedicineHumansLactic Acidglucoselcsh:ScienceTranscription factorMultidisciplinaryATP synthasebiologyCell growthta1184lcsh:RHEK 293 cellsCorrectionMitochondrial Proton-Translocating ATPasesMitochondriaCell biologyHEK293 CellsDiabetes Associated Protein in Insulin-sensitive Tissuesmedicine.anatomical_structureCell culturebiology.proteinATP synthaselcsh:QResearch ArticlePLOS ONE
researchProduct

Transmembrane BAX Inhibitor-1 Motif Containing Protein 5 (TMBIM5) Sustains Mitochondrial Structure, Shape, and Function by Impacting the Mitochondria…

2020

The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson&rsquo

Programmed cell deathmitochondrial metabolismProtein familyApoptosisMitochondrioncell survivalArticleGHITMMitochondrial ProteinsTMBIMHumansInner mitochondrial membranelcsh:QH301-705.5bcl-2-Associated X ProteinBAX inhibitor 1ChemistryMembrane ProteinsGeneral MedicineTransmembrane proteinCell biologyDNA-Binding Proteinsmitochondriacell deathMitochondrial biogenesislcsh:Biology (General)Mitochondrial Membranes
researchProduct

Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells

2016

We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide\ud hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor\ud (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast\ud cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically\ud synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-\ud 5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on\ud cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation,\ud an…

0301 basic medicineVascular Endothelial Growth Factor AIndolesCytotoxicityTriple Negative Breast Neoplasmsbreast cancer; MDA-MB231 cells; histone deacetylase inhibitor; vascular endothelial growth factor receptor-2 inhibitor; cytotoxicity; cell cycle; apoptosis; autophagy; mitochondrial metabolismHydroxamic AcidsCatalysi0302 clinical medicineBreast cancerTumor Cells CulturedCytotoxic T cellSettore BIO/06 - Anatomia Comparata E CitologiaSpectroscopyVorinostatVascular endothelial growth factor receptor-2 inhibitorApoptosis; Autophagy; Breast cancer; Cell cycle; Cytotoxicity; Histone deacetylase inhibitor; MDA-MB231 cells; Mitochondrial metabolism; Vascular endothelial growth factor receptor-2 inhibitor; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic ChemistryKinaseHistone deacetylase inhibitorapoptosisComputer Science Applications1707 Computer Vision and Pattern RecognitionGeneral MedicineCell cycleFlow CytometryComputer Science ApplicationsCell biologyMDA-MB231 cell030220 oncology & carcinogenesisFemaleQD0241Programmed cell deathmedicine.drug_classCell SurvivalBlotting WesternAntineoplastic AgentsBiologyCell cycleCatalysisArticleInorganic Chemistry03 medical and health sciencesmedicineAutophagyHumansPhysical and Theoretical ChemistryProtein Kinase InhibitorsMolecular BiologyQD0415Histone deacetylase inhibitorAutophagyOrganic ChemistryApoptosiHistone Deacetylase Inhibitors030104 developmental biologyApoptosisMitochondrial metabolismMDA-MB231 cellsHistone deacetylaseInternational Journal of Molecular Sciences; Volume 17; Issue 8; Pages: 1235
researchProduct